
Prof. Dr. Claudia Müller-Birn
Institute for Computer Science, Networked Information Systems

Our course at a glance

February 7, 2012

Netzprogrammierung
(Algorithmen und Programmierung V)

2

Scope of this course

„In this class you will learn about principles, methods,
languages and middleware for developing

distributed systems, especially web-based applications.“

We will not talk about
•  Theory of computer networks
•  Telematics
•  Theory of distributed systems
•  Design of distributed algorithms
•  Design of distributed databases

Claudia Müller-Birn, Netzprogrammierung 2011/12

3

Goal of this course
At the end of this course, you should be able to

•  Differentiate relevant interaction paradigms such as client/server or peer-to-peer
•  Knowing the different levels of support for distributed computing
•  Develop distributed software based on local inter-process communication (remote

procedure calls) as well as socket-based network communication
•  Implement distributed software based on Java RMI
•  Knowing middleware technologies and understanding their differences
•  Describe the main design principles of cloud computing and its application areas
•  Development of web-based, distributed software based on relevant standards

Claudia Müller-Birn, Netzprogrammierung 2011/12 4

Grading
Your final grade is only based on the result of your written exam.

But

In order to actively participate in this course, you need to fulfill ALL of the following
requirements
•  you have to submit (n-2) of all assignments that are distributed in the labs,
•  you need to get at least 50 % of all points in each assignment,
•  you must present at least one assignment,
•  the mean (= average) of all your assignments need to be above 60 %.

Claudia Müller-Birn, Netzprogrammierung 2011/12

5

Lab results

Claudia Müller-Birn, Netzprogrammierung 2011/12

0"

5"

10"

15"

20"

25"

30"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

An
za
hl
'd
er
'A
bg
ab

en
'

Lab'Termine'

Anzahl'der'Abgaben'in'den'Labs'

Lab"1""

Lab"2"

Lab"3""

Lab"4"

Lab"5""

Lab"6""

0.0%$
20.0%$
40.0%$
60.0%$
80.0%$
100.0%$
120.0%$
140.0%$
160.0%$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$

La
be

rg
eb

ni
ss
e*
in
*P
ro
ze
nt
*

Lab*Termine*

Durchschni5lich*erreichte*Punktzahl*in*Prozent*

Lab$1$$

Lab2

Lab$3$$

Lab4

Lab$5$$

Lab$6$$

6

Defining a distributed system
“A distributed system consists of a collection of autonomous computer linked by a
computer network and equipped with distributed system software. Distributed system
software enables computers to coordinate their activities and to share the resources
of the system – hardware, software, and data – ” (Coulouris et al., 1994)

“[…] so that users perceive the system as a single, integrated computing facility.”

“Most computer software today runs in distributed systems, where the interactive
presentation, application business processing, and data resources reside in loosely-
coupled computing nodes and service tiers connected together by
networks.” (Buschmann et al., 2007)

Claudia Müller-Birn, Netzprogrammierung 2011/12

7

Descriptive models for distributed system design

Architectural model

Claudia Müller-Birn, Netzprogrammierung 2011/12

Physical
model

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Inter-process communication

Remote
invocation

Indirect
communication

Processes

Objects

Components

Web Services

TCP
sockets

UDP
sockets

Multi-
cast

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Architectural patterns

Vertical distribution Horizontal distribution

Interaction
model

Multi-tier Thin/Fat Client

Interaction
model

Failure
model

Security
model

8

Architecture of distributed systems

9

Three generations of distributed systems
Early distributed systems
•  Emerged in the late 1970s and early 1980s because of the usage of local area

networking technologies
•  System typically consisted of 10 to 100 nodes connected by a LAN, with limited

Internet connectivity and supported services (e.g., shared local printer, file servers)

Internet-scale distributed systems
•  Emerged in the 1990s because of the growth of the Internet
•  Infrastructure became global

Contemporary distributed systems
•  Emergence of mobile computing leads to nodes that are location-independent
•  Need to added capabilities such as service discovery and support for spontaneous

interoperation
•  Emergence of cloud computing and ubiquitous computing
 Claudia Müller-Birn, Netzprogrammierung 2011/12 10

Types of communication paradigms

Claudia Müller-Birn, Netzprogrammierung 2011/12

Interprocess communication

Remote invocation

Indirect communication

11

Interprocess communication
•  Low-level support for communication between processes in distributed systems

including message parsing-primitives

•  Direct access to the API offered by Internet protocols (socket programming) and
support for multicast communication

Claudia Müller-Birn, Netzprogrammierung 2011/12 12

Remote invocation
Covering a range of techniques based on a two-way exchange between
communicating entities

Resulting in the calling of a remote operation, procedure or method

•  Request-reply protocols: more a pattern imposed on an underlying message-
parsing service to support client-server computing

•  Remote procedure calls: procedures in processes on remote computers can be
called as if they are procedures in the local address space

•  Remote method invocation: a calling object can invoke a method in a remote
object

Claudia Müller-Birn, Netzprogrammierung 2011/12

13

Remote invocation
Covering a range of techniques based on a two-way exchange between
communicating entities

Resulting in the calling of a remote operation, procedure or method

•  Request-reply protocols: more a pattern imposed on an underlying message-
parsing service to support client-server computing

•  Remote procedure calls: procedures in processes on remote computers can be
called as if they are procedures in the local address space

•  Remote method invocation: a calling object can invoke a method in a remote
object

Claudia Müller-Birn, Netzprogrammierung 2011/12

•  Communication represent a two-way relationship
between sender and receiver

•  Sender explicitly directing messages/invocations
to the associated receivers

•  Receivers are aware of senders

•  Must exist at the same time

14

Remote invocation
Covering a range of techniques based on a two-way exchange between
communicating entities

Resulting in the calling of a remote operation, procedure or method

•  Request-reply protocols: more a pattern imposed on an underlying message-
parsing service to support client-server computing

•  Remote procedure calls: procedures in processes on remote computers can be
called as if they are procedures in the local address space

•  Remote method invocation: a calling object can invoke a method in a remote
object

Claudia Müller-Birn, Netzprogrammierung 2011/12

•  Sender do not need to know who they are
sending to (space uncoupling)

•  Senders and receivers do not need to exist in the
same time (time uncoupling)

15

Indirect communication
Group communication
•  Delivery of messages to a set of recipients
•  Abstraction of a group which is represented in the system by a group identifier
•  Recipients elect to receive message send to a group a joining a group

Publish-subscribe-systems
•  A large number of producers (publisher) distribute information

items of interest (events) to a similarly large number of
consumers (subscribers)

Message queues
•  Message queues offer a point-to-point service whereby producer processes can

send messages to a specified queue and consumer processes can receive
messages from the queue or being notified

Claudia Müller-Birn, Netzprogrammierung 2011/12 16

Architectural styles

Claudia Müller-Birn, Netzprogrammierung 2011/12

client-server

peer-to-peer

17

Client-server

net programming, winter term 2011/2012 18

Fundamental issue with client-server
Client-server offers a direct, relatively simple approach to the sharing of data and
other resources

� But it scales poorly

The centralization of service provision and management implied by placing a service
at a single address does not scale well beyond the capacity of the computer that
hosts the service and the bandwidth of its connections.

Even though, there a several variations of the client-server architecture to respond to
this problem but none of them really solve it.

There is a need to distribute shared resources much more widely in order to share
the computing and communication loads amongst a much larger number of
computers and network links.

net programming, winter term 2011/2012

19

Peer-to-peer application
•  Is composed of a large number of peer processes

running on separate computers
•  All processes have client and server roles: servent
•  Patterns of communication between them depends

entirely on application requirements
•  Storage, processing and communication loads for

accessing objects are distributed across computers
and network links

•  Each object is replicated in several computers to
further distribute the load and to provide resilience
in the event of disconnection of individual
computers

•  Need to place and retrieve individual computers is
more complex then in client-server architecture

net programming, winter term 2011/2012 20

Middleware layers

Claudia Müller-Birn, Netzprogrammierung 2011/12

Applications, services

Remote invocation, indirect communication

Underlying inter-process communication primitives:
Sockets, message passing, multicast support

UDP and TCP

Middleware
layers

21

Socket address = IP address and port number

Sockets
•  Sockets provide an interface for

programming networks at the
transport layer.

•  Network communication using
Sockets is very much similar to
performing file I/O

•  Socket-based communication is
programming language
independent.

Ports
•  Port is represented by a positive

(16-bit) integer value

•  Some ports have been reserved to
support common/well known
services such as ftp (20 for data
and 21 control)

•  User level process/services
generally use port number value
>= 1024

Claudia Müller-Birn, Netzprogrammierung 2011/12 22

Realizing process-to-process communication

UDP features
•  UDP datagram encapsulated

inside an IP package
•  Header includes source and

destination port numbers
•  No guarantee of delivery
•  Message size is limited
•  Restricted to applications and

services that do not require
reliable delivery of single or
multiple messages

TCP features
•  Provides reliable delivery of

arbitrarily long sequences of bytes
via stream-based programming
abstraction

•  Connection-oriented service
•  Before data is transferred, a

bidirectional communication
channel is established

Claudia Müller-Birn, Netzprogrammierung 2011/12

23

UDP Sockets

Robert Tolksdorf und Peter Löhr

bind 1. Client creates socket bound
to a local port

bind 2. Server binds its socket to a
server port

4. Ports and sockets are closed
close close

3. Client/Server send and receive
datagrams send receive

24 Robert Tolksdorf und Peter Löhr

TCP Sockets
bind

accept connect

read/write

close

read/write

close

1. Server bind port

listen 2. Server is ready and listening

3. Server is waiting for request,
client sends request, server
accepts

4. Client and server are
connceted - bidirectional!

5. Connection is closed

25

Approaches for external data representation
CORBA’s common data representation
•  Concerned with an external representation for the structured and primitive types

that can be passed as the arguments and results of remote invocation in CORBA.

Java’s object serialization
•  Refers to the activity of flattening an object or even a connected set of objects that

need to be transmitted or stored on a disk

XML
•  Defines a textual format for representing structured data

Protocol buffer
JSON

Claudia Müller-Birn, Netzprogrammierung 2011/12 26

Multicast communication

Claudia Müller-Birn, Netzprogrammierung 2011/12

27 Robert Tolksdorf und Peter Löhr

Multicast Sockets
1. Participants bind socket

2. Participants join group

3. Particpants receive
messages from sender

4. Partcipants leave group and
release socket

bind

224.x.x.x

bind bind

bind bind joingroup

bind bind send /
receive

bind bind

224.x.x.x

leavegroup /
close

28

Remote invocation (RPC and RMI)

29

Implementation of RPC

Claudia Müller-Birn, Netzprogrammierung 2011/12

client

Request

Reply

Communication Communication
 module module dispatcher

service

client stub

server stub
procedure procedure

client process server process

procedure program

30

Commonalities of RMI and RPC
•  Support of programming languages with interfaces

•  Both are typically constructed on top of the request-reply protocol

•  Offer call semantics such as at-least-once and at-most-once

•  Offer a similar level of transparency, means local and remote calls employ the
same syntax but remote interfaces expose the distributed nature for example by
supporting remote exceptions

Claudia Müller-Birn, Netzprogrammierung 2011/12

31

Components of the RMI architecture

Claudia Müller-Birn, Netzprogrammierung 2011/12

client

object A
proxy
for B

server

remote
object B

 Skeleton &
 dispatcher
 for B’s class

remote reference
module

communication
module

remote reference
module

request

reply

servant

32

Abstraction layers in the RMI implementation
1.  Stub and Skeleton layer

Intercepts method calls made by the client to the interface reference variable and
redirects these calls to a remote RMI service

2.  Remote Reference Layer
Interpret and manage references made from clients to the remote service objects

3.  Transport layer
Is based on TCP/IP connections between machines in a network
Provides basic connectivity, as well as some firewall penetration strategies

Claudia Müller-Birn, Netzprogrammierung 2011/12

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

RMI
system

33

Proxy design pattern: Applications
Virtual Proxies: delaying the creation and initialization of expensive objects until
needed, where the objects are created on demand.

Remote Proxies: providing a local representation for an object that is in a different
address space. A common example is Java RMI stub objects. The stub object acts
as a proxy where invoking methods on the stub would cause the stub to
communicate and invoke methods on a remote object (called skeleton) found on a
different machine.

Protection Proxies: where a proxy controls access to RealSubject methods, by
giving access to some objects while denying access to others.

Smart References: providing a sophisticated access to certain objects such as
tracking the number of references to an object and denying access if a certain
number is reached, as well as loading an object from database into memory on
demand.
Claudia Müller-Birn, Netzprogrammierung 2011/12 34

Reflections
Reflection enables Java code
•  to discover information about the fields, methods and constructors of loaded

classes, and
•  to use reflected fields, methods, and constructors to operate on their underlying

counterparts on objects, within security restrictions.
More information: http://download.oracle.com/javase/tutorial/reflect/

Using Reflection in RMI
•  Proxy has to marshal information about a method and its arguments into a request.
•  For a method it marshals an object of class Method into the request. It then adds an

array of objects for the method�s arguments.
•  The dispatcher unmarshals the Method object and its arguments from request

message.
•  The remote object reference is obtained from remote reference module.
•  The dispatcher then calls the Method object’s �invoke��method, supplying the target

object reference and the array of argument values.
•  After the method execution, the dispatcher marshals the result or any exceptions

into the reply message.

Claudia Müller-Birn, Netzprogrammierung 2011/12

35

Remote Reference Layer
Defines and supports the invocation semantics of the RMI connection
Provides a RemoteRef object that represents the link to the remote service
implementation object

JDK 1.1 implementation of RMI
•  Provides a unicast, point-to-point connection
•  Before a client can use a remote service, the remote service must be instantiated

on the server and exported to the RMI system

Java 2 SDK implementation of RMI
•  When a method call is made to the proxy for an activatable object, RMI determines

if the remote service implementation object is dormant
•  If yes, RMI will instantiate the object and restore its state from a disk file

Claudia Müller-Birn, Netzprogrammierung 2011/12 36

Naming Remote Objects

RMI includes a simple service called the RMI Registry, rmiregistry.

The RMI Registry runs on each machine that hosts remote service objects and
accepts queries for services, by default on port 1099.

Claudia Müller-Birn, Netzprogrammierung 2011/12

How does a client find a RMI remote service?

37

Naming Remote Objects (cont.)

Claudia Müller-Birn, Netzprogrammierung 2011/12

Server program Client program

Creates a remote service
by creating a local object

Export object to RMI

Register object in the
RMI Registry

Queries RMI Registry by
method lookup()

rmi://<host_name>[:<name_service_port>]/<service_name>

38

Publish-subscribe systems
Indirect communication

Claudia Müller-Birn, Netzprogrammierung 2011/12

39

A publish-subscribe system is a system…
…where publishers publish structured events to an event service

and subscribers express interest in particular events through subscriptions.

Claudia Müller-Birn, Netzprogrammierung 2011/12

A simple object-based p-s system
40

Topic-based publish-subscribe interactions

Claudia Müller-Birn, Netzprogrammierung 2011/12

41

Content-based publish-subscribe interactions

Claudia Müller-Birn, Netzprogrammierung 2011/12 42

Type-based publish-subscribe interactions

Claudia Müller-Birn, Netzprogrammierung 2011/12

43

The architecture of publish-subscribe systems

Claudia Müller-Birn, Netzprogrammierung 2011/12

TCP/IP IP Multicast SOAP 802.11b/g …

Broker
overlay

P2P
structured

overlay

P2P
unstructured

overlay

Flooding Selective diffusion Gossiping

Event flooding

Subscription flooding

Rendez-Vous

Filter-based

Blind gossip

Informed gossip

Matching

Network
protocols

Overlay
infra-

structures

Event
routing

44

The architecture of publish-subscribe systems

Claudia Müller-Birn, Netzprogrammierung 2011/12

TCP/IP IP Multicast SOAP 802.11b/g …

Broker
overlay

P2P
structured

overlay

P2P
unstructured

overlay

Flooding Selective diffusion Gossiping

Event flooding

Subscription flooding

Rendez-Vous

Filter-based

Blind gossip

Informed gossip

Matching

Network
protocols

Overlay
infra-

structures

Event
routing

Type of dynamics of mobility

Type of dynamics of nodes
 (churn rate)

Type of dynamics of subscriptions

45

Web Services

Claudia Müller-Birn, Netzprogrammierung 2011/12 46

Characteristics of a web service
A web service interface generally consists of a collection of operations that can be
used by a client over the Internet. The operations in a web service may be provided
by a variety of different resources, for example, programs, objects, or databases.

The key characteristic of (most) web services is that they can process XML-formatted
SOAP messages. An alternative is the REST approach.

Each web service uses its own service description to deal with the service-specific
characteristics of the messages it receives.

Commercial examples include Amazon, Yahoo, Google and eBay.

Claudia Müller-Birn, Netzprogrammierung 2011/12

47

Web service infrastructure and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

Security

Service descriptions (in WSDL)

Applications

Directory service

Web Services

XML

Choreography

SOAP

URIs (URLs or URNs) HTTP, SMTP or other transport

48

The Hypertext Transfer Protocol
(HTTP)

Claudia Müller-Birn, Netzprogrammierung 2011/12

49

HTTP Requests
After opening a connection, the client sends a request
•  The method indicates the action to be performed on the resource
•  HTTP's most interesting methods are: GET, HEAD, POST
•  Other interesting methods are: PUT, DELETE

The URI identifies the resource to which the request should be applied
•  Absolute URIs are required when contacting Proxies
•  Absolute paths are required when contacting a server directly
•  The URI may contain query information
•  Fragment identifiers are not sent (they are interpreted on the client side)

The host header field must be included in every request.

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)
50

Realizing web services with SOAP

Claudia Müller-Birn, Netzprogrammierung 2011/12

51

Simple Object Access Protocol (SOAP)
SOAP is designed to enable both client-server and asynchronous interaction over the
Internet. It defines a scheme for using XML to represent the contents of request and
reply messages as well as a scheme for the communication of documents.

It is used for information exchange and RPC, usually (but not necessarily) over
HTTP.

(Very) basic SOAP architecture:

Claudia Müller-Birn, Netzprogrammierung 2011/12 52

Web service architecture (simplified)

Claudia Müller-Birn, Netzprogrammierung 2011/12

Service
Requestor

Find Publish

Bind

Discovery
service

Service
Provider

(SOAP)

(SOAP)

(WSDL)

(UDDI)

http://www.w3.org/TR/ws-arch/

53

Representational State Transfer
(REST)

Claudia Müller-Birn, Netzprogrammierung 2011/12 54

REST design principles
Stateless Client/Server Protocol: Each message contains all the information needed
by a receiver to understand and/or process it. This constraint attempts to “keep things
simple” and avoid needless complexity.

A set of uniquely addressable resources enabled by a universal syntax for resource
identification; “Everything is a Resource” in a RESTful system.

A set of well-defined operations that can be applied to all resources; In the context of
HTTP, the primary methods are POST, GET, PUT, and DELETE, similar (but not
exactly) to the database world's notion of CRUD (Create, Read, Update, Delete).

Resources are typically stored in a structured data format that supports hypermedia
links, such as HTML or XML.

Claudia Müller-Birn, Netzprogrammierung 2011/12

55

Establishing a common model
Distributed systems must be based on a shared model
•  Traditional systems must agree on a common API
•  REST systems structure agreement into three areas

REST is built around the idea of simplifying agreement
•  nouns are required to name the resources that can be talked about
•  verbs are the operations that can be applied to named resources
•  content types define which information representations are available

REST triangle

Claudia Müller-Birn, Netzprogrammierung 2011/12 56

REST vs. SOAP-based web services
REST is a description of the Web's design principles
•  It is not something new, it is simply a systematic view of the Web
•  REST's claim is to be able to learn from the Web's success

Web Services (in their narrow sense) do not build on REST
•  They use HTTP as a transport protocol
•  They re-create Web functionality through additional specifications (WS-*)
•  They have been built by programmers using a top-down approach

REST and Web Services have different design approaches
•  REST starts at the resources and takes everything from there
•  Web Services focus on messages, which in most cases are operations

Claudia Müller-Birn, Netzprogrammierung 2011/12

57

Common Gateway Interface (CGI)

Claudia Müller-Birn, Netzprogrammierung 2011/12 58

Application areas
The Web server can call up a
program, while passing user-
specific data to the program.

The program then processes
that data and the server
passes the program's
response back to the Web
browser.

Claudia Müller-Birn, Netzprogrammierung 2011/12

Forms, e.g. shopping, booking

Gateways, e.g. search engine, database

Virtual documents, e.g. guestbook, chat,
bulletin board, dictionary

59

Hypertext Preprocessor (PHP)

Claudia Müller-Birn, Netzprogrammierung 2011/12 60

Basic application areas
Server-side scripting
•  Most traditional and main target field
•  Ingredients: PHP parser (e.g., CGI), a web server and a web browser

Command line scripting
•  Use a PHP script to run it without any server or browser
•  Ingredients: PHP parser

Writing desktop applications
•  Well, is not the very best language to create a desktop application with a graphical

user interface
•  Ingredients: you know PHP very well, and if you need some advanced PHP

features in your client-side applications use PHP-GTK

Claudia Müller-Birn, Netzprogrammierung 2011/12

61

JavaScript

Claudia Müller-Birn, Netzprogrammierung 2011/12 62

JavaScript object hierarchy

Claudia Müller-Birn, Netzprogrammierung 2011/12

ht
tp

://
w

w
w

.c
om

pt
ec

hd
oc

.o
rg

/in
de

pe
nd

en
t/w

eb
/c

gi
/ja

va
m

an
ua

l/j
av

ao
bj

he
ir.

ht
m

l

63 Robert Tolksdorf und Peter Löhr

JavaScript principle

 Contents Behavior Presentation

 HTML JavaScript CSS
 (event handling)

<head> myJS.js myCSS.css
<script src="myJS.js">
<link rel="stylesheet"

 type="text/css"
 href="myCSS.css">

...

64

W3C Document Object Model (DOM)
It describes a tree structure of all HTML elements, including attributes and the text
they contain. (http://www.w3.org/DOM/DOMTR)

Claudia Müller-Birn, Netzprogrammierung 2011/12

65

Asynchronous Java and XML (AJAX)

Claudia Müller-Birn, Netzprogrammierung 2011/12 66

A typical Ajax request
1.  User clicks, invoking event handler

2.  Handler's JS code creates an XMLHttpRequest
object

3.  XMLHttpRequest object requests a document
from a web server

4.  Server retrieves appropriate data, sends it back

5.  XMLHttpRequest fires event to say that the data
has arrived (this is often called a callback; you
can attach a handler to be notified when the data
has arrived)

6.  Your callback event handler processes the data
and displays it

Claudia Müller-Birn, Netzprogrammierung 2011/12

browser client

User interface

JavaScript call HTML+CSS data

XMLHttpRequest

XMLHttpRequest
callback()

server-side systems

Web server

Datastores, backend processing

data exchange

HTTP Request Data

1

2

3

4

5

6

67

Peer-to-peer-systems

Claudia Müller-Birn, Netzprogrammierung 2011/12 68

History

Claudia Müller-Birn, Netzprogrammierung 2011/12
(Eberspächer, & Schollmeier 2005)

69

Comparison of discussed algorithms
PsP
system

Model Parameters Hops to
locate
data

Routing
state

Peers
joins and
leaves

Reliability

Napster

Centralized metadata
index;
Location inquiry from
central server;
Download directly
from peer

None Constant Constant Constant Central server returns multiple
download locations; client can
retry

Gnutella Broadcast request to
as many peers
as possible, download
directly

None no
guarantee

Constant
(approx
3-7)

Constant Receive multiple replies from
peers with available data;
requester can retry

Pastry Plaxton-style global
mesh

N – number
of peers in
network

b – base of
the chosen
identifier

logbN logbN logN Replicate data across multiple
peers;
Keep track of multiple paths to
each peer

Claudia Müller-Birn, Netzprogrammierung 2011/12 70

Cloud Computing

71

Computing Models

Claudia Müller-Birn, Netzprogrammierung 2011/12

�Why do it yourself if you can pay someone to do it for you?�

72

What is the difference between cloud and grid
computing?
Grid computing is where more than one computer coordinates to solve a problem
together. Often used for problems involving a lot of number crunching, which can be
easily parallelizable.

Cloud computing is where an application doesn't access resources it requires
directly, rather it accesses them through something like a service.

The service maps any requests for resources to its physical resources, in order to
provide for the application. Usually the service has access to a large amount of
physical resources, and can dynamically allocate them as they are needed.

A cloud would usually use a grid. A grid is not necessarily a cloud or part of a cloud.

Claudia Müller-Birn, Netzprogrammierung 2011/12

This excellent answer is taken from:
http://stackoverflow.com/questions/1067987/what-is-the-difference-between-cloud-computing-and-grid-computing

73

Cloud computing stack
 Software as a Service (SaaS)
•  A way to access applications hosted on the

web through your web browser

Platform as a Service (PaaS)
•  A pay-as-you-go model for IT resources

accessed over the Internet

Infrastructure as a Service (IaaS)
•  Use of commodity computers, distributed

across Internet, to perform parallel
processing, distributed storage, indexing
and mining of data

•  Virtualization

Claudia Müller-Birn, Netzprogrammierung 2011/12

host

build

consume

74

Virtualization techniques
•  Emulation

•  Full virtualization

•  Paravirtualization

•  Hardware-assisted virtualization

•  Application-level virtualization

Claudia Müller-Birn, Netzprogrammierung 2011/12

75

That’s all.

Claudia Müller-Birn, Netzprogrammierung 2011/12

